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Optical absorption for parallel cylinder arrays
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We study the long-wavelength electromagnetic resonances of interacting cylinder arrays. By using a normal-
modes expansion where the effects of geometry and material are separated, it is shown that two parallel
cylinders with different radii have electromagnetic modes distributed symmetrically about depolarization factor
1
2 . Both sets couple to longitudinal and transverse components of the external field, but amplitudes of sym-
metric depolarization factors become exchanged when considering longitudinal or transverse polarization. We
also find that amplitudes satisfy sum rules that depend on the ratio of the cylinders radii. The main effect of the
difference in radii is a spectral shift towards the isolated cylinder resonance as this difference increases.
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I. INTRODUCTION

The optical properties of ordered cylinder arrays has
come a subject of much recent interest mainly becaus
their potential use as photonic crystals@1–3# and their oc-
curence in carbon nanotube bundles@4#. Theoretical research
once done for spherical particles@5–8# has lately been ap
plied to cylinders@9–12#. It is well known that in the long-
wavelength limit, the optical properties of a dilute compos
of microscopic spherical particles are well described
mean-field theories such as Claussius-Mosotti or Maxw
Garnett. These theories are essentially based on a dip
approximation assuming that the particles are sufficiently
apart so that it is possible to neglect contributions fro
higher-order multipoles. As particles become closer, ho
ever, this approach is no longer valid. Several models h
been presented to overcome this difficulty, among which
theory of normal modes has been shown to be particul
convenient since it makes possible an expansion of the
tem response in terms of resonance terms, where diele
properties appear separate from geometrical factors@13,14#.
The simplest system exhibiting the effects of interactions
pair of identical particles very close to each other. A pair
particles of the same material and form but different size
the simplest nonsymmetric system of interacting partic
@8#.

Recently, a model to study arbitrary cylinder arrays ma
of the same material has been constructed and applie
detail to a pair of identical cylinders@11#. The response o
periodic arrays of identical parallel cylinders including pro
imity effects is also easily treated within that formalism. T
method follows a normal-modes description appropriate
the long-wavelength limit first proposed by Bergma
@13,14#, and makes use of a basis of cylindrical harmon
solutions to Laplace’s equation. Modes are characterized
depolarization factors and strengths, defined in such a
that an isolated cylinder exhibits a depolarization factor1
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and unit strength. We here follow a similar procedure
study a pair of non-touching parallel cylinders of the sa
material but different radii, for different polarizations of th
external field. We show that a difference in radii does n
alter the property that depolarization factors are symme
about 1

2 , although while in the equal radii case only mod
with all depolarization factors either smaller or larger than1

2

are excited for a given polarization, mixing now occurs. W
find that all normal modes are active for an external fie
perpendicular to the cylinders axis, whether parallel or p
pendicular to the plane containing the axis. Furthermo
strengths of modes with depolarization factors smaller tha1

2

are exchanged with those of depolarization modes big
than 1

2 , when the direction of the electric field changes fro
parallel to perpendicular.

In Sec. II, we get the multipolar moments and the abso
tion cross section for a pair of unequal cylinders. In Sec.
we present and discuss our numerical results. Finally, in S
IV, we summarize our conclusions.

II. THEORY

We consider a set ofN parallel, infinite, uncharged cylin
ders of dielectric function«1 placed in a homogeneous me
dium of dielectric function«2, excited by an external electri
field whose wavelength is much longer than the cylind
radii or separation between cylinders. The charge distribu
they acquire may be described in terms of individual mu
pole momentsqm j obeying the equations,@6#

qm j52am jS Vm1 (
m8 j 8

Am j
m8 j 8qm8 j 8D . ~1!

Here,m is a positive or negative integer labeling the angu
momentum component along the cylinder axes,j
51,2, . . . ,N is a particle index, am j5umuaj

2umu(«1

2«2)/(«11«2) are the multipolar polarizabilities of cylinde
©2002 The American Physical Society12-1
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j of radiusaj , andVm are the coefficients in the expansion
the external potential in terms of cylindrical harmonics. T
coupling coefficients are given by@11#

Am j
m8 j 8

5H 0 if mm8.0,

~21!m8~ umu1um8u21!!

umu! um8u!

ei (m82m)u j j 8

r j j 8
umu1um8u if mm8,0,

~2!

where (r j j 8 ,u j j 8)5rW j 82rW j are polar coordinates in thex-y
plane giving the relative position of cylinderj 8 with respect
to cylinder j.

As discussed in Ref.@11#, if the cylinders are of the sam
material, one can separate in Eq.~1! terms depending on th
material susceptibilityx from those involving the geometr
of the array. We intend here to follow the same proced
and write Eq.~1! as

(
m8

~x21dmm81Hm
m8!xm85 f m , ~3!

wherem represents the pair of indices (m, j ), and

Hm j
m8 j 852p~dmm8d j j 81umm8u1/2aj

umuaj 8
um8uAm j

m8 j 8!, ~4!

f m j522pumu1/2aj
umuVm j , ~5!

xm j5
qm j

umu1/2aj
umu . ~6!

Note the important feature that matrixH depends on geom
etry only and its eigenvalues$4pnm% define the depolariza
tion factors $nm% of the array. For later convenience, w

write H52p(I1B), with I the unit matrix andBm j
m8 j 8

5umm8u1/2aj
umuaj 8

um8uAm j
m8 j 8 , so that the depolarization factor

$nm% and eigenvalues$lm% of B satisfy the relation,

nm5 1
2 ~11lm!. ~7!

Because of the propertyBm j
m8 j 850 if mm8.0 @see Eq.~2!#,

we write rows and columns of matrixB with indexesm and
m8 following the sequence 1,2, . . . ,21,22, . . . , resulting
in matrix B written in terms of a real matrixb of half its
dimension, as

B5F0 b

b 0G . ~8!

From now on, we use indexm andm8 as positive integers
and write the elements of matrixb as follows:

bm j
m8 j 85~21!m8Amm8

~m1m821!!

m!m8!

aj
maj 8

m8ei (m1m8)u j j 8

r j j 8
m1m8

.

~9!
03661
e

It can be shown that the eigenvalues of matrixB come in
pairs with opposite signlm56l m , wherel m are the eigen-
values ofb ~see the Appendix!. As follows from Eq.~7!, the
depolarization factors are then symmetric about the va
1/2. The components of vectorxm can de written in terms of
the eigenvalues of matrixb and elements of matrixu that
diagonalizesb,

u21bu5l . ~10!

In the case of a uniform electric-fieldE0 parallel to the plane
containing the cylinder axes and perpendicular to the lat
~parallel field geometry!, xm j5$x2m j%. Vector x15xm j is
then given by

x15~us21u21!f1, ~11!

where

sm j
m8 j 85dmm8d j j 8@x2112p~11l m j!#, ~12!

f m j
1 5dm1pajE0 . ~13!

In the case of an electric field perpendicular to the pla
containing the cylinder axes~perpendicular field geometry!,
xm j52x2m j . Vectorx25$x2m j% is then given by

x25~ur21u21!f2, ~14!

where now

r m j
m8 j 85dmm8d j j 8@x2112p~12l m j!#, ~15!

f 2m j
2 5dm1ipajE0 . ~16!

For a pair of unequal parallel cylinders with radiia1 anda2,
and axis at a distanceR, we define dimensionless paramete

b5a2 /a1 and d5R/a1. Because of the propertiesbm j
m8 j50

andbm2
m815(2b)m2m8bm1

m82, we write rows~columns! of ma-
trix b with particle indexj ( j 8) in the sequence 1,2 resultin
in matrix b written in terms of a smaller arrayg as follows:

b5F0 g

ḡ 0G , ~17!

whereḡ is the transpose ofg, and the elements of matrixg
are given by

gm
m85~21!m8Amm8

~m1m821!!

m!m8!

bm8

dm1m8
. ~18!

Results for a pair of cylinders with an external field in th
parallel or perpendicular configuration can be written
terms of a single normal-modes expansion as

x6m j5 (
m8 j 8

Cm j
m8 j 8 f 6

x2114pn6m8 j 8

. ~19!
2-2
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In this expression, the upper~lower! sign corresponds to th
parallel ~perpendicular! configuration, with (m8, j 8) labeling
the excitation modes of the pair as a coupled system. It g
just half of the multipoles; the others are obtained from
corresponding symmetry property as given in the paragr
preceding Eqs.~11! and ~14!. We have defined the depola
ization factors of modes,

n6m8 j 85
1
2 ~16l m8 j 8!, ~20!

and coefficients corresponding to strength of modes,

Cm j
m8 j 85um j

m8 j 8~u1,1
m8 j 81bu1,2

m8 j 8!. ~21!

We have also defined

f 15 f 1,1
1 , ~22!

f 25 f 21,1
2 . ~23!

We find that coefficientsCm j
m8 j 8 satisfy the sum rules

(
m8 j 8

Cm1
m8 j 85dm1 , ~24!

(
m8 j 8

Cm2
m8 j 85bdm1 . ~25!

It can be shown that, as with the original matrixB, eigenval-
ues$l m j% of matrix b come also in pairs with an opposit
sign; therefore, the sets of depolarization factors$n1m j% and
$n2m j% are identical~see the Appendix!. A given depolariza-
tion factor exhibits a different strength depending on the
rection of the external field. As seen in the normal-mod
expansion given by Eq.~19! the same strength coefficien

Cm j
m8 j 8 appear for depolarization factornm8 j 8 in the parallel

field response and forn2m8 j 8 in the perpendicular field re
sponse. Then, strenghts corresponding to depolarization
tors symmetric around value 1/2 are exchanged between
sponses corresponding to fields parallel or perpendicular

The magnitude of the electric dipole moment for the p
can be written as

p65pa1
2 (

m8 j 8

C11
m8 j 81bC12

m8 j 8

x2114pn6m8 j 8

E0 , ~26!

where p1(p2) corresponds to a parallel~perpendicular!
field. The absorption cross section is proportional to
imaginary part of the factor accompanyingE0 in the previ-
ous expression, a quantity we identify as the complex eff
tive polarizability of the pair. Thus, we arrive at a norma
modes decomposition for the absorption cross section of
parallel cylinders,

s6;ImH (
m8 j 8

C11
m8 j 81bC12

m8 j 8

x2114pn6m8 j 8
J ~27!

where s1(s2) corresponds to a parallel~perpendicular!
field. Notice that, as follows from Eq.~21!, the numerator in
the previous sum can be written as
03661
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~u1,1
m8 j 81bu1,2

m8 j 8!2, ~28!

and is always positive definite. According to the sum ru
given by Eqs.~24! and ~25!, the sum of the numerators i
expansions~26! and ~27! is 11b2, a feature we use in cal
culating the normalized strength of modes in the followi
section.

III. NUMERICAL RESULTS

We have solved numerically the eigenvalue equation
matrix b for the case of a pair of parallel cylinders of diffe
ent radii a1 and a2, and have calculated the depolarizatio

factorsnm8 j 8 and strength coefficientsCm j
m8 j 8 using Eqs.~20!

and~21!. We have studied in detail the normal-modes exp
sion for the dipole moment of the pair as given by Eq.~26!.
Our most important finding is that when the radii are n
equal, modes with depolarization factors above and be
the value1

2 mix for all orientations of the external field. Thi
is known not to happen when cylinders are equal@11#.

In obtaining numerical results, we use the dimensionl
parameterss5R/(a11a2) that measures the center-to
center distance,b5a2 /a1 which characterizes how disimila
the radii are, andm5(R2a12a2)/a1 measuring the borde
to border distance. In Fig. 1, we plot modes for very clo
cylinders (s51.10) with one radius three times the oth
(b53). Modes are for the parallel configuration, while tho
for the perpendicular case are obtained by mirror reflect
about depolarization factor12 . Note that modes are place
symmetrically about this central value so that, as far as
sition is concerned, they are indistinguishable in both c
figurations. The figure shows the modes with largest am
tude, while weaker modes cluster aroundn5 1

2 adding up to
a significant strength around this value. The total sum
amplitudes is 10, as required by the sum rule mentioned a
Eq. ~28!. Labels, included in order to match with labeling
Fig. 2, are arbitrary.

Figure 2 shows depolarization factors~a! and normalized
strengths~b! in terms of the parameterb, at fixed s51.1.
The sum over all strengths is unity, having been normaliz

FIG. 1. Mode amplitudes for a pair of unequal cylinders unde
uniform electric field in the parallel field configuration. The rad
ratio equalsb53, and the separation parameter iss51.1.
2-3
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by the factor 11b2. Thus, the results atb53 correspond to
amplitudes shown in Fig. 1 with the normalization factor 1
In changingb, we keep constant the parameters by chang-
ing the center-to-center distanceR accordingly. Note that
modes with essentially zero strength atb51 become impor-
tant when increasing this ratio. Labels are arbitrary and
used just to relate the data in different figures.

Results shown in Fig. 3 were obtained by changingb and
the center-to-center separationR, but keeping constant th
border-to-border distance at the fixed valuem50.4. It is
known that for spheres, this distance is the relevant par
eter in determining the position of the modes. We note t
the depolarization factors move appart with increasingb,
while at constants @Fig. 2~a!# they get closer. This is be
cause the relation between the edge-to-edge and cente
center parameters ism5(s21)(11b), indicating that asb
goes to infinity, so doesm if s is kept constant. Thus, a
modes should converge to the isolated cylinder valuen
51/2 in this case, while ifm is kept constant, the mode
converge to those of a cylinder in front of a plane at the sa
distance.

Figure 4 shows the absorption coefficient for a pair
silver cylinders in the parallel configuration, for the cas
b53 and b59, keeping the border to border distancem
fixed at the value 0.4. Up to 45 moments~M545! were
necessary in order to achieve convergence. The diele
function used had the Drude form

«~v!5«b2
vp

2

v~v1 ig!
,

with «b53.6, vp575 256 cm21 and g5486 cm21 @15#.

FIG. 2. Depolarization factors~a! and normalized strengths~b!
as a function of size parameterb, for a pair of unequal cylinders
with fixed separation parameters51.1 under a uniform electric
field. Labels correspond to those in Fig. 1.
03661
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From this expression, and Eq.~27!, it follows that resonances
occur at frequencies given approximately by

Vm5
vp

A 1

nm
1~«b21!

.

Using the above equation and Fig. 3, one can verify
approximate position of the various peaks in Fig. 4. In t
figure, the equal radii case (b51) has been included fo
comparison. It is apparent from the figure that as the ra
become more disimilar, the spectral weight is shifted

FIG. 3. Same as Fig. 2, but with fixed border to border para
eterm50.4.

FIG. 4. Absorption coefficient for a pair of silver cylinders wit
radii ratiosb51, 3, and 9.
2-4
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higher frequencies, clustering around the isolated cylin
resonance atVm5vp /A11«b, a result already suggested b
Fig. 3~b!.

IV. CONCLUSIONS

In summary, we have shown that the absorption cross
tion of a pair of parallel cylinders of the same material b
different radii contains modes whose depolarization fact
are symmetrically distributed around12 , with amplitudes de-
pending on the direction of the external field. When the fi
changes from the parallel to the perpendicular configurat
amplitudes corresponding to symmetric depolarization f
tors about the central value 1/2 are exchanged. The m
effect of the difference in radii is a shift of the spectr
weight towards this central value, which characterizes
resonance of an isolated cylinder.
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APPENDIX

We consider the eigenvalue equation for operatorT,

Tx5lx, ~A1!

in a basis of dimension 2M . Here,T has the form

T5F 0 A

B 0G , ~A2!

whereA, B each has dimensionM. In writing the eigenvec-
tors x in terms of two smaller vectorsw andv of dimension
M the eigenvalue equation is cast into the form,
. R

03661
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F 0 A

B 0 GFw

v G5lFw

v G ~A3!

or

Av5lw, ~A4!

Bw5lv. ~A5!

From there we get the separate eigenvalue problems,

~AB!w5l2w, ~A6!

~BA!v5l2v, ~A7!

both having the same eigenvaluesl2. In solving for the cor-
responding eigenvectors and writing them as columns,
get matricesw andv that diagonalize matricesAB andBA.
They can be used to form a matrixU as,

U5
1

A2
Fw w

v 2vG , ~A8!

which diagonalizes matrixT according to the relation

U21TU5L, ~A9!

with matrix L given by

L5Fl 0

0 2l
G . ~A10!

Here, l(2l) is a diagonal matrix formed by the positiv
~negative! square root of the eigenvalues of matricesAB or
BA. Therefore, the eigenvalues of matrixT come in pairs
with opposite sign. In the case of a pair of cylinders, we fi
the previous feature two times. It first happens because c

pling coefficientsAm j
m8 j 8 are zero ifm andm8 have the same

sign, and then occurs also because they are zero forj 5 j 8.
The dimensionality (4M )3(4M ) of the original eigenvalue
problem is seen to be reduced toM3M dimensions.
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