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Optical absorption for parallel cylinder arrays

P. Robles
Escuela de Ingeniéai Electrica, Universidad Catlica de Valparaso, Casilla 4059, Valparap, Chile

R. Rojas
Departamento de Bica, Universidad Tenica Federico Santa Méaay Casilla 110-V, Valparao, Chile

F. Claro
Facultad de Fsica, Pontificia Universidad Calica de Chile, Casilla 306, Santiago 22, Chile
(Received 12 June 2001; revised manuscript received 22 October 2001; published 19 February 2002

We study the long-wavelength electromagnetic resonances of interacting cylinder arrays. By using a normal-
modes expansion where the effects of geometry and material are separated, it is shown that two parallel
cylinders with different radii have electromagnetic modes distributed symmetrically about depolarization factor
1. Both sets couple to longitudinal and transverse components of the external field, but amplitudes of sym-
metric depolarization factors become exchanged when considering longitudinal or transverse polarization. We
also find that amplitudes satisfy sum rules that depend on the ratio of the cylinders radii. The main effect of the
difference in radii is a spectral shift towards the isolated cylinder resonance as this difference increases.
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[. INTRODUCTION and unit strength. We here follow a similar procedure to
study a pair of non-touching parallel cylinders of the same
The optical properties of ordered cylinder arrays has bematerial but different radii, for different polarizations of the
come a subject of much recent interest mainly because d@@xternal field. We show that a difference in radii does not
their potential use as photonic crystéls-3] and their oc-  alter the property that depolarization factors are symmetric
curence in carbon nanotube bundlés Theoretical research abouts, although while in the equal radii case only modes
once done for spherical particl¢s—8] has lately been ap- With all _depolarlzat_lon factorg elt_her sme_lller or larger tBan
plied to cylinder§9—12]. It is well known that in the long- are excited for a given polarlzatlon,_mlxmg now occurs. We
wavelength limit, the optical properties of a dilute compositefind that all normal modes are active for an external field
of microscopic spherical particles are well described byPerpendicular to the cylinders axis, whether parallel or per-
mean-field theories such as Claussius-Mosotti or MaxwellPendicular to the plane containing the axis. Furthermore,
Garnett. These theories are essentially based on a dipolgiengths of modes with depolarization factors smaller than
approximation assuming that the particles are sufficiently fafre exchanged with those of depolarization modes bigger
apart so that it is possible to neglect contributions fromthan 3, when the direction of the electric field changes from
higher-order multipoles. As particles become closer, howparallel to perpendicular.
ever, this approach is no longer valid. Several models have In Sec. Il, we get the multipolar moments and the absorp-
been presented to overcome this difficulty, among which thdion cross section for a pair of unequal cylinders. In Sec. Ill,
theory of normal modes has been shown to be particu|ar|y\le present anq discuss our nU.merical results. Fina”y, in Sec.
convenient since it makes possible an expansion of the sysV, we summarize our conclusions.
tem response in terms of resonance terms, where dielectric
properties appear separate from geometrical fa¢t8sl4. Il. THEORY
The simplest system exhibiting the effects of interactions is a . L .
pair of identical particles very close to each other. A pair of Wwe co.r15|der.a set dﬂ parallel, |nf|n|te, uncharged cylin-
particles of the same material and form but different size isdgrs of d|_electr|_c funct!orz:l p'ac?d in a homogeneous me-
the simplest nonsymmetric system of interacting particle%'um of dielectric funct|ore_2, excited by an external elec_trlc
[8]. |elc_i_ whose wgvelength is mgch longer than the. cyll|nd.er
Recently, a model to study arbitrary cylinder arrays madéad" or separation between_cylmders. The chargg dlstr|but|(_3n
of the same material has been constructed and applied mey acquire may be d_escrlbed In terms of individual multi-
detail to a pair of identical cylindergll]. The response of pole momentsjy,; obeying the equation$g]
periodic arrays of identical parallel cylinders including prox-
imity effects is also easily treated within_th_at formalism_. The Umj= — @mj| Vm+ 2 Am;i'qm,j, . 1)
method follows a normal-modes description appropriate to m’j’
the long-wavelength limit first proposed by Bergmann
[13,14), and makes use of a basis of cylindrical harmonicsHere,mis a positive or negative integer labeling the angular
solutions to Laplace’s equation. Modes are characterized bjpomentum component along the cylinder axeg,
depolarization factors and strengths, defined in such a way1,2,... N is a particle index, am,:|m|aj2““‘(s1
that an isolated cylinder exhibits a depolarization factor —e,)/(e,+¢,) are the multipolar polarizabilities of cylinder
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j of radiusa; , andV, are the coefficients in the expansion of It can be shown that the eigenvalues of ma@ixcome in

the external potential in terms of cylindrical harmonics. Thepairs with opposite sigh ,= =/, , where/ , are the eigen-

coupling coefficients are given Hy1] values ofb (see the Appendjx As follows from Eq.(7), the
depolarization factors are then symmetric about the value
Amj' 1/2. The components of vectay, can de written in terms of
the eigenvalues of matrik and elements of matrix that
0 if mm'>0, diagonalizes,
={ (=)™ (Im|+|m’|-1)t M ms , u-tbu=/ 10
ot p\mHlm’l if mm’ <0, (10

I 2) In the case of a uniform electric-fiele, parallel to the plane
containing the cylinder axes and perpendicular to the latter-
where (o;,,6;;,)=p; —p; are polar coordinates in they  (parallel field geometny Xp;={X_m;}. Vector x; =xp; is
plane giving the relative position of cylindgt with respect ~ then given by
to cylinder;j. 1 ees
As discussed in Ref11], if the cylinders are of the same Xy =(us tumHfT, 1D
material, one can separate in Efj) terms depending on the

material susceptibilityy from those involving the geometry where
of the array. We intend here to follow the same procedure m’ 1 ,
and write Eq.(1) as Smip = Omm i [x "+ 2m(1+ )], (12
, foi=0mmaiEy. 13
> (X 18, HHE )X, =1, 3 mj— omLTE o 13
w In the case of an electric field perpendicular to the plane
where u represents the pair of indicem(j), and containing the cylinder axegperpendicular field geometry

Xmj= —X_mj. Vectorx_={x_p;} is then given by
Hmjj :277(5mmr5“r+|mm,|1/2aﬂm|alr;n |AmJJ ), (4)

x_=(ur " tu"Hf, (14)
fmj=— 27/ m| Y2V, ) where now
B qm] rm,]’:b‘ 76,[X71+27T(1_/ )]1 (15)
ij——|m|1/2a“m|. (6) mj mm’ ¢jj mj
! _ .
f?mj:5m1|7Ta.on. (16)

Note the important feature that mattik depends on geom-
etry only and its eigenvalugglzn,,} define the depolariza- For a pair of unequal parallel cylinders with raelii anda,,
tion factors{n,} of the array. For later convenience, we and axis at a distand® we define dimensionless parameters

write H=2(1+B), with | the unit matrix andBm;j' B=a,/a, and §=R/a,. Because of the propertiéxﬁ}}jzo
=|mm’|1’2a}m‘a}rf1 'Am;i' , so that the depolarization factors andbMt=(—8)™ ™ b™2, we write rows(columng of ma-
{n,} and eigenvalue$\ ,} of B satisfy the relation, trix b with particle index (j') in the sequence 1,2 resulting
) in matrix b written in terms of a smaller array as follows:
nM=5(1+)\M). (7) 0
1! g
Because of the propery;! =0 if mm'>0 [see Eq(2)], b=|— ol (17)
we write rows and columns of matrB with indexesm and 9
m’ following the sequence 1,2..,—1,—2,...,resulting hereq is the t d the el f matri
in matrix B written in terms of a real matriv of half its ~ W"€r€d 's; e transpose aj, and the elements of matrix
dimension, as are given by
0 b o —(mEm =11 g
B:{b ol (8) Om =(—=1)M ymm pum— e (19

From now on, we use indem andm’ as positive integers, Results for a pair of cylinders with an external field in the
and write the elements of matrkx as follows: parallel or perpendicular configuration can be written in
terms of a single normal-modes expansion as

o ’
m+m’—1)! a'a); gl (m+m’)o;jr

bm}j?(—l)m'vmm’(

1
et
Xemj=

mim'! Pl s
(9) m’j’ X7 +47Tnimrjr

(19
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In this expression, the uppépbwer) sign corresponds to the ]
parallel (perpendiculdrconfiguration, with (n’,j’) labeling 2.0+
the excitation modes of the pair as a coupled system. It gives 2
just half of the multipoles; the others are obtained from the ° 5]
corresponding symmetry property as given in the paragraph ‘é ’ 3
preceding Eqgs(11) and(14). We have defined the depolar- 5
ization factors of modes, 2 10 4.
| 2 5
nimrjr:%(li/mrjr), (20) g' 68
< 0.5
and coefficients corresponding to strength of modes, 9
10
crd =umd (ufy + puty)). (21) 0.0 : | . L
' ’ 0.3 0.4 0.5 0.6 0.7

We have also defined Depolarization factors

fo=Ff14, (22) FIG. 1. Mode amplitudes for a pair of unequal cylinders under a

_ uniform electric field in the parallel field configuration. The radii

fo=f"11. (23 ratio equals=3, and the separation parametewis 1.1.
We find that coefficient€™ " satisfy the sum rules
mj Salisfy (W + puy’y?, 28)

2 Cht = m, (24 and is always positive definite. According to the sum rules

mJ given by Egs.(24) and (25), the sum of the numerators in

expansiong26) and (27) is 1+ B2, a feature we use in cal-
> CM =B (25  culating the normalized strength of modes in the following

m/jl

section.

It can be shown that, as with the original matBxeigenval-
ues{/ n;} of matrix b come also in pairs with an opposite

sign; therefore, the sets of depolarization factors,; and We have solved numerically the eigenvalue equation for

{_”—mj} are ider_1ti_cal(se<_e the AppendjxA given d_epolariza- . matrix b for the case of a pair of parallel cylinders of differ-
tion factor exhibits a different strength depending on the d|—ent radiia, anda,, and have calculated the depolarization
rection of the external field. As seen in the normal-modes ’ L
expansion given by Eq19) the same strength coefficients 12Ct0rShmj» and strength coefficientSp,;’  using Eqs(20)

m'j’ L . and(21). We have studied in detail the normal-modes expan-
Cnj appear for depolarization facter,,;, in the parallel

ion for the dipol t of th i i b .
field response and fan_ ;. in the perpendicular field re- sion for the dipole moment of the pair as given by E26)

Our most important finding is that when the radii are not

sponse. Then, strenghts corresponding to depolarization fa&qual, modes with depolarization factors above and below

tors symmetric around valug 1/2 are exchanged bet.ween e values mix for all orientations of the external field. This
sponses corresponding to fields parallel or perpendicular. is known not to happen when cylinders are equal.
The magnitude of the electric dipole moment for the pair |, gptaining numerical results, we use the dimensionless

can be written as parametersoc=R/(a;+a,) that measures the center-to-
center distance@=a,/a, which characterizes how disimilar
the radii are, angh=(R—a;—a,)/a; measuring the border
to border distance. In Fig. 1, we plot modes for very close
_ cylinders (=1.10) with one radius three times the other
where p.(p-) corresponds to a paralldperpendiculdr  (5=3). Modes are for the parallel configuration, while those
field. The absorption cross section is proportional to theor the perpendicular case are obtained by mirror reflection
imaginary part of the factor accompanyifg in the previ-  apout depolarization factof. Note that modes are placed
ous expression, a quantity we identify as the complex effecgymmetrically about this central value so that, as far as po-
tive polarizability of the pair. Thus, we arrive at a normal- sition is concerned, they are indistinguishable in both con-
modes decomposition for the absorption cross section of Wegurations. The figure shows the modes with largest ampli-

I1Il. NUMERICAL RESULTS

Cm!j/+ Cm/j/
11 B 12 Eo, (26)

m’j' X71+47Tntmrj/

parallel cylinders,

Cm!j!+BCm!jV
o 3 P @
m’j’ X +47Tnimrjr
where o, (0_) corresponds to a parallgperpendicular
field. Notice that, as follows from E@21), the numerator in
the previous sum can be written as

tude, while weaker modes cluster aroumd 3 adding up to
a significant strength around this value. The total sum of
amplitudes is 10, as required by the sum rule mentioned after
Eq. (28). Labels, included in order to match with labeling in
Fig. 2, are arbitrary.

Figure 2 shows depolarization factq® and normalized
strengths(b) in terms of the parametgs, at fixedo=1.1.
The sum over all strengths is unity, having been normalized
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FIG. 2. Depolarization factor&) and normalized strength$)
as a function of size parametg; for a pair of unequal cylinders
with fixed separation parameter=1.1 under a uniform electric
field. Labels correspond to those in Fig. 1.

FIG. 3. Same as Fig. 2, but with fixed border to border param-
eteru=0.4.

From this expression, and E@7), it follows that resonances

tf i i imately b
by the factor & B2. Thus, the results g8=3 correspond to oceur at frequencles given approximately by

amplitudes shown in Fig. 1 with the normalization factor 10.

In changingB, we keep constant the parameteby chang- 0 = @p

ing the center-to-center distand® accordingly. Note that ® 1

modes with essentially zero strength@gat 1 become impor- —+(gp,—1)
tant when increasing this ratio. Labels are arbitrary and are Ny

used just to relate the data in different figures.

Results shown in Fig. 3 were obtained by changihgnd ~ Using the above equation and Fig. 3, one can verify the
the center-to-center separati®) but keeping constant the approximate position of the various peaks in Fig. 4. In the
border-to-border distance at the fixed valpe=0.4. It is  figure, the equal radii casg31) has been included for
known that for spheres, this distance is the relevant paranfomparison. It is apparent from the figure that as the radii
eter in determining the position of the modes. We note thaPecome more disimilar, the spectral weight is shifted to
the depolarization factors move appart with increasihg
while at constantr [Fig. 2(a)] they get closer. This is be-
cause the relation between the edge-to-edge and center-ts
center parameters js=(o—1)(1+ B), indicating that a®3
goes to infinity, so doeg if o is kept constant. Thus, all
modes should converge to the isolated cylinder vatue
=1/2 in this case, while ifu is kept constant, the modes
converge to those of a cylinder in front of a plane at the same
distance. ;

Figure 4 shows the absorption coefficient for a pair of
silver cylinders in the parallel configuration, for the cases
B=3 and B=9, keeping the border to border distanae
fixed at the value 0.4. Up to 45 momenfs!=45) were
necessary in order to achieve convergence. The dielectri
function used had the Drude form

12 - —p=t

[arb. units]

ent

Absorption coeffic

T T T T T T T
2 30000 32000 34000 36000 38000
P

B o(w+iy)’

w

e(w)=¢ep frequency [em™]

FIG. 4. Absorption coefficient for a pair of silver cylinders with
with £,=3.6, w,=75256 cm* and y=486 cm ' [15].  radii ratios=1, 3, and 9.
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higher frequencies, clustering around the isolated cylinder 0 Allw w
resonance af) ,= w,/\/1+ ¢, a result already suggested by =\ (A3)
. wo P B 0O]|v v
Fig. 3(b).
or
IV. CONCLUSIONS
Av=\w, (A4)

In summary, we have shown that the absorption cross sec-
tion of a pair of parallel cylinders of the same material but Bw=\uv. (A5)
different radii contains modes whose depolarization factors
are symmetrically distributed aroursd with amplitudes de- From there we get the separate eigenvalue problems,
pending on the direction of the external field. When the field 5
changes from the parallel to the perpendicular configuration, (AB)W=\"W, (A6)
amplitudes corresponding to symmetric depolarization fac- (BA)U =A% (A7)
tors about the central value 1/2 are exchanged. The main '
effect of the difference in radii is a shift of the spectral poth having the same eigenvaluek In solving for the cor-
weight towards this central value, which characterizes thfl’esponding eigenvectors and writing them as columns, we
resonance of an isolated cylinder. get matricesv andv that diagonalize matrice&AB and BA.

They can be used to form a matiix as,
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which diagonalizes matriX according to the relation

with matrix A given by

APPENDIX N
We consider the eigenvalue equation for operator A= 0 -l (A10)
TX=\X, (A1)

Here, A(—\) is a diagonal matrix formed by the positive
(negative square root of the eigenvalues of matriée€3 or

BA. Therefore, the eigenvalues of matiTx come in pairs
with opposite sign. In the case of a pair of cylinders, we find

; (A2)  the previous feature two times. It first happens because cou-

. . . rit .
pling coeff|C|entsAnmﬂJ are zero ifmandm’ have the same

whereA, B each has dimensioM. In writing the eigenvec- sign, and then occurs also because they are zerp=fgr.
torsx in terms of two smaller vectons andv of dimension  The dimensionality (M) X (4M) of the original eigenvalue

in a basis of dimensionM. Here, T has the form

0 A

™8 o

M the eigenvalue equation is cast into the form, problem is seen to be reducedlbx M dimensions.
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